Probabilistic Integrated Assessment of "Dangerous" Climate Change

Michael Mastrandrea
August 17, 2004
GCEP End-of-Summer Workshop

Outline

Probability and Likelihood

"Dangerous" Climate Change (DAI)

Probabilistic Analysis of DAI Potential

Implications for Climate Policy

 Climate change prediction involves much uncertainty

- Climate change prediction involves much uncertainty
- If likelihoods are not communicated, end-users will create their own
 - Special Report on Emissions Scenarios, e.g.

- Climate change prediction involves much uncertainty
- If likelihoods are not communicated, end-users will create their own
 - Special Report on Emissions Scenarios, e.g.
- Probabilistic ranges vs. point estimates

- Climate change prediction involves much uncertainty
- If likelihoods are not communicated, end-users will create their own
 - Special Report on Emissions Scenarios, e.g.
- Probabilistic ranges vs. point estimates
- Climate policy = risk management

- UNFCCC Article 2, 1992:
 - The Goal: "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system."

- UNFCCC Article 2, 1992:
 - The Goal: "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system."
 - Requirements:
 - "to allow ecosystems to adapt naturally to climate change"

- UNFCCC Article 2, 1992:
 - The Goal: "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system."
 - Requirements:
 - "to allow ecosystems to adapt naturally to climate change"
 - "to ensure that food production is not threatened"

- UNFCCC Article 2, 1992:
 - The Goal: "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system."
 - Requirements:
 - "to allow ecosystems to adapt naturally to climate change"
 - "to ensure that food production is not threatened"
 - "to enable economic development to proceed in a sustainable manner"

- What is "dangerous anthropogenic interference" (DAI)?
- Potentially "dangerous" climate impacts:

Species loss and ecosystem disruption

Sea level rise

Increased frequency and intensity of storms

Agricultural impacts

NASA

Abrupt climate change

- What is "dangerous anthropogenic interference" (DAI)?
- Potentially "dangerous" climate impacts:
 - Species loss and ecosystem disruption
 - Sea level rise
 - Increased frequency and intensity of storms
 - Agricultural impacts
 - Abrupt climate change
- Different thresholds

Who decides what is "dangerous" in DAI?

- Who decides what is "dangerous" in DAI?
 - What geographical scale?

- Who decides what is "dangerous" in DAI?
 - What geographical scale?
 - What socioeconomic level?

- Who decides what is "dangerous" in DAI?
 - What geographical scale?
 - What socioeconomic level?
 - What value system?

- Who decides what is "dangerous" in DAI?
 - What geographical scale?
 - What socioeconomic level?
 - What value system?
- Varying importance of impact categories

Metric Assumptions:

- Metric Assumptions:
 - Global scale

- Metric Assumptions:
 - Global scale
 - Full extent of scientific knowledge

- Metric Assumptions:
 - Global scale
 - Full extent of scientific knowledge
 - All categories of "dangerous" impacts

- Metric Assumptions:
 - Global scale
 - Full extent of scientific knowledge
 - All categories of "dangerous" impacts
 - No weighting of categories

- Metric Assumptions:
 - Global scale
 - Full extent of scientific knowledge
 - All categories of "dangerous" impacts
 - No weighting of categories
 - Link impacts to global average temperature increase

- Metric Assumptions:
 - Global scale
 - Full extent of scientific knowledge
 - All categories of "dangerous" impacts
 - No weighting of categories
 - Link impacts to global average temperature increase
 - Cumulative "danger"

- Metric Assumptions:
 - Global scale
 - Full extent of scientific knowledge
 - All categories of "dangerous" impacts
 - No weighting of categories
 - Link impacts to global average temperature increase
 - Cumulative "danger"
 - Probabilistic metric

Risks to Unique and Threatened Systems

Reasons for Concern

- I Risks to Unique and Threatened Systems
- II Risks from Extreme Climate Events

Reasons for Concern

- I Risks to Unique and Threatened Systems
- II Risks from Extreme Climate Events
- III Distribution of Impacts
- IV Aggregate Impacts
- V Risks from Future Large-Scale Discontinuities

Reasons for Concern

- I Risks to Unique and Threatened Systems
- II Risks from Extreme Climate Events
- III Distribution of Impacts
- IV Aggregate Impacts
- V Risks from Future Large-Scale Discontinuities

"Dangerous" CDF

20th %: 1.8°C 50th %: 2.85°C 80th %: 4.2°C

Metric Application

How likely is DAI?

Metric Application

How likely is DAI?

Apply DAI metric to projections of future climate change

Metric Application

- How likely is DAI?
- Apply DAI metric to projections of future climate change
- Dynamic Integrated Climate and Economy (DICE)
 Model
 - Integrated Assessment Model (IAM)

- Two key sources of uncertainty:
 - -Climate Sensitivity (°C)

- Two key sources of uncertainty:
 - -Climate Sensitivity (°C)
 - –Climate Damages (°C→% GWP)

Scen. A: 3°C in 2090

Scen. C: 6°C in 2090

Methods

• Step 1: Vary climate sensitivity only (no climate damages, low discount rate)

Methods

- Step 1: Vary climate sensitivity only (no climate damages, low discount rate)
- Step 2: Vary climate sensitivity and climate damages (low discount rate)

Methods

- Step 1: Vary climate sensitivity only (no climate damages, low discount rate)
- Step 2: Vary climate sensitivity and climate damages (low discount rate)
- In each step: Evaluate probability of DAI

Step 1

Step 2

Step 2

What Does it all Mean?

 What is an "acceptable risk" of "dangerous" climate change?

~45% risk of "dangerous" climate change?

"Climate insurance" will reduce risk to acceptable level

Current Information

"Dangerous" Change Threshold

© Larson

Thank You!

